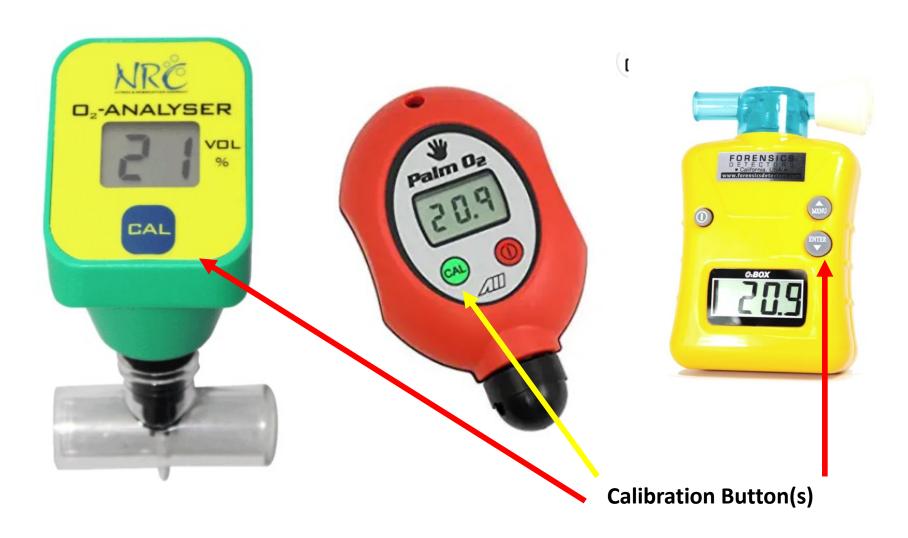


Checking Your Gas (Nitrox Mix)

Nitrox Measurement

- Safe Nitrox operations call for the individual diver to personally check her/his tanks to validate the Nitrox level in their tanks.
- Some operations use "adjusted" procedures:
 - Operator Rep measures tanks and has the actual diver watch and diver signs the inspection log.
 - Operator Rep checks and marks tanks and diver signs log (???????).
- Whether you test the tanks yourself (<u>Preferred</u>) or observe someone else, most important Pre-Step is CALIBRATION!!

Sample Oxygen Analyzers



Sample Oxygen Analyzers

Heat/Humidity Adjustment

www.analox.net

ANALOX O, EII®

Oxygen compensation chart for moisture in the atmosphere

ATMOSPHERE OXYO	GEN PERCEN	T IN F	RELATION	TO T	EMPERA	ATURE	AND R	ELATIVI	HUMI	DITY
TEMP F	32	40	50	60	70	80	90	100	110	120
TEMP C	0	4	10	16	21	27	32	38	43	49
RELATIVE HUMIDITY				ATM	OSPHER	IC OXY	GEN P	ERCENT		
10	20.9	20.9	20.9	20.9	20.8	20.8	20.8	20.8	20.7	20.7
20	20.9	20.9	20.8	20.8	20.8	20.8	20.7	20.6	20.5	20.4
30	20.9	20.8	20.8	20.8	20.7	20.7	20.6	20.5	20.4	20.2
40	20.8	20.8	20.8	20.7	20.7	20.6	20.5	20.4	20.2	19.9
50	20.8	20.8	20.8	20.7	20.6	20.5	20.4	20.2	20.0	19.7
60	20.8	20.8	20.7	20.7	20.6	20.5	20.3	20.1	19.8	19.5
70	20.8	20.8	20.7	20.6	20.5	20.4	20.2	19.9	19.6	19.2
80	20.8	20.8	20.7	20.6	20.5	20.3	20.1	19.8	19.5	19.0
90	20.8	20.7	20.7	20.6	20.4	20.3	20.0	19.7	19.3	18.7
100	20.8	20.7	20.6	20.5	20.4	20.2	19.9	19.5	19.1	18.5
H ₂ 0 at 100% RH	0.6	0.8	1.2	1.8	2.5	3.4	4.7	6.5	8.6	11.5

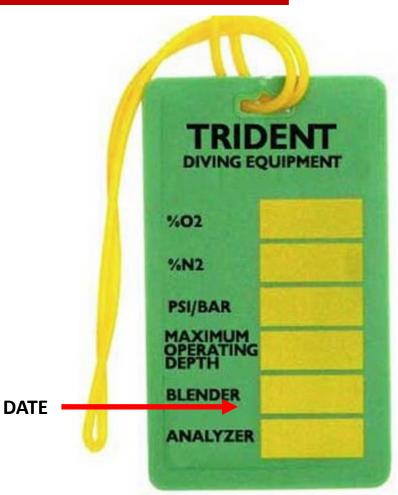
If the temperature and RH axis meet in this part of the chart, calibrate to the chart O₂ level or with dry air to maintain 0.5% O₂ accuracy in NITROX.

Copyright © 1996: Analox Limited, Stokesley. All Worldwide Rights Reserved.

Sensor Calibration

- Analyzer Readings are WORTHLESS if you have not calibrated the sensor before testing your tanks.
- CALIBRATION PROCEDURE (Most Systems):
 - Place sensor against a KNOWN air source.
 - Air Tank or Some people wave open sensor tip in the air.
 - Start a SLOW to MODERATE volume of air across the sensor until both the FLOW and Sensor READING stabilize.
 - Recommend tilting sensor opening away from the air source until you have established a slow, steady flow.
 - Press the "Calibrate" Button or Use the Calibration knob to set the correct O2 level.
 - Actual Setting is usually around 20.9% Oxygen.

Test Procesure


- Test Procedure:
 - Place sensor against the valve opening of tank to be tested.
 - Start a SLOW volume of air across the sensor until <u>FLOW</u> stabilizes.
 - Recommend tilting sensor opening away from the air source until you have established a slow, steady flow.
 - Read O2 level off the analyzer screen once the <u>READING</u> stabilizes.
- For multiple tank testing, watch the sensor screen to see if it is reverting to the calibrated level between tanks.
 - NOTE- With most systems with small openings, this a SLOW process.
 - For those with removable tips, you can remove and replace it to hurry the process.
 - May need to recalibrate if testing a large number of tanks.

Marking Nitrox Tanks

Milhone	· January	OF ETHE
	ITROX	Enriched Air NITROX
Date	TRU	Date
Mix Dessure		Mix
Osygon		Max Depth
Analyser/		Oxygen Analysis Analyser/
Uspas	this breathing	Use of this breathing media is restricted
10 Ce	ertified Nitro	to certified Nitrox divers only.
WWW.prod	live System	A PLUS WARNE SUPPLY, INC.

Analyzer Cost and Maintenance

- Average cost for an Oxygen Analyzer runs from \$265 -\$320. Some available for as low as \$199.
- Most vendors indicate that sensor life is "Around" 36 Months.
- Replacement Sensors Run ~\$130.
- Sensor life can be protected and possibly extended by minimizing exposure to air/humidity.
 - Cap over Sensor opening.
 - Stored in watertight or airtight container/location.

Discussion

Discussion

TAKE-AWAYS:

- CALIBRATION CALIBRATION CALIBRATION
- Gentle Steady Air Flow
- Protect and Maintain Your Analyzer